• Search this websiteSearch Site
  • Translate the contents of this page Translate Page
  • Facebook Facebook
  • Instagram Instagram
  • YouTube YouTube
  • LinkedIn LinkedIn

How do we teach students to be creative?

Human beings have always been creative. The fact that we have survived on the planet is testament to this. Humans adapted to and then began to modify their environment. We expanded across the planet into a whole range of climates. At some point in time, we developed consciousness and then language. We began to question who we are, how we should behave, and how we came into existence in the first place. Part of human questioning was how we became creative.

The myth that creativity is only for a special few has a long history. For the Ancient Chinese and the Romans, creativity was a gift from the gods. Fast forward to the mid-nineteenth century and creativity was seen as a gift, but only for the highly talented, romantically indulgent, long-suffering and mentally unstable artist. Fortunately, in the 1920s the field of science began to look at creativity as a series of human processes. Creative problem solving was the initial focus, from idea generation to idea selection and the choice of a final product. The 1950s were a watershed moment for creativity. After the Second World War, the Cold War began and competition for creative solutions to keep a technological advantage was intense. It was at this time that the first calls for STEM in education and its associated creativity were made. Since this time, creativity has been researched across a whole range of human activities, including maths, science, engineering, business, and the arts.

The value of creativity in education
Creativity is valuable in education because it builds cognitive complexity. Creativity relies on having deep knowledge and being able to use it effectively. Being creative involves using an existing set of knowledge or skills in a particular subject or context to experiment with new possibilities in the pursuit of valued outcomes, thus increasing both knowledge and skills. It develops over time and is more successful if the creative process begins at a point where people have at least some knowledge and skills. 

Creativity is not just making things up. For something to meet the definition of creativity, it must not only be new but also relevant and useful. For example, if a student is asked to make a new type of musical instrument, one made of salami slices may be original and interesting, but neither relevant nor useful. (On the other hand, carrots can make excellent recorders). Creativity also works best with constraints, not open-ended tasks. For example, students can be given a limit to the number of lines used when writing a poem, or a set list of ingredients when making a recipe. A common STEM example is to make a building using drinking straws but no sticky tape or glue. Students need to think more deeply about how the various elements of a building connect in order for the building to stand up.

Creativity must also have a result or an outcome. In some cases the result may be a specific output, such as the correct solution to a maths problem, a poem in the form of a sonnet, or a scientific experiment to demonstrate a particular type of reaction. As noted above, outputs may also be intangible: they might be an idea for a solution or a new way of looking at existing knowledge and ideas. The outcome of creativity may not necessarily be pre-determined and, when working with students, generating a specific number of ideas might be a sufficient creative outcome.

The world of education is now committed to creativity. Creativity is central to policy and curriculum documents in education systems from Iceland to New Zealand. The origins of this global shift lie in the 1990s, and it was driven predominantly by economics rather than educational philosophy.

There has also been a global trend in education to move from knowledge acquisition to competency development. Creativity often is positioned as a competency or skill within educational frameworks. However, it is important to remember that the incorporation of competencies into a curriculum does not discount the importance of knowledge acquisition. Research in demonstrates that students need fundamental knowledge and skills. Indeed, it is the sound acquisition of knowledge that enables students to apply it in creative ways. It is essential that teachers consider both how they will support their students to acquire the necessary knowledge and skills in their learning area as well as the opportunities they will provide for applying this knowledge in ways that support creativity. In fact, creativity requires two different sets of knowledge: knowledge and skills in the learning area, and knowledge of and skills related to the creative process, from idea generation to idea selection, as well as the appropriate attitudes, attributes and environment.

Supporting students to be creative
In order for teachers to support students to be creative, they should attend to four key areas. Firstly, creativity needs an appropriate physical and social environment. Students need to feel a sense of psychological safety when being creative. The role of the teacher is to ensure that all ideas are listened to and given feedback in a respectful manner. In terms of the physical environment, a set of simple changes rather than a complete redesign of classrooms is required: modifying the size and makeup of student groups, working on both desks and on whiteboards, or taking students outside as part of the idea generation process can develop creative capacity. 

Secondly, teachers can support students to develop the attitudes and attributes required for creativity, which include persistence, discipline, resilience, and curiosity. Students who are more intellectually curious are open to new experiences and can look at problems from multiple perspectives, which builds creative capacity. In maths, for example, this can mean students being shown three or four different ways to solve a problem and selecting the method that best suits them. In Japan, students are rewarded for offering multiple paths to a solution as well as coming up with the correct answer.

Thirdly, teachers can support the creative process. It begins with problem solving, or problem posing, and moves on to idea generation. There are a number of methods which can be used when generating ideas such as brainstorming or mind-mapping. For example, rather than looking at possible causes of World War II as a list, it might be better to categorise them into political, social and economic categories using a mind map. This creative visual representation may provide students with new and useful insights into the causes of the war. Students may also realise that there are more categories that need to be considered and added, thus allowing them to move from surface to deep learning as they explore relationships rather than just recalling facts. Remember that creativity is not possible without some knowledge and skills in that subject area. For instance, proposing that World War II was caused by aliens may be considered imaginative, but it is definitely not creative.

The final element to be considered is that of the outcomes – the product or results – of creativity. However, as with many other elements of education, it may be more useful to formatively assess the process which the students have gone through rather than the final product. By exploring how students generated ideas, whether the method of recording ideas was effective, whether the final solutions were practical, and whether they demonstrated curiosity or resilience can often be more useful than merely grading the final product. Encouraging the students to self-reflect during the creative process also provides students with increased skills in metacognition, as well as having a deeper understanding of the evolution of their creative competencies. It may in fact mean that the final grade for a piece of work may take into account a combination of the creative process as observed by the teacher, the creative process as experienced and reported by the student, and the final product, tangible or intangible.

References

Collard, P., & Looney, J. (2014). Nurturing creativity in educationEuropean Journal of Education, 49(3), 348-364.

Craft, A. (2001). An analysis of research and literature on creativity in education: Report prepared for the Qualifications and Curriculum Authority.

Runco, M. (2008). Creativity and educationNew Horizons in Education, 56(1), 96-104.